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Explain why a rocket engine is called a reaction engine.
Identify the country that first used the rocket as a weapon.
Compare the rocketry advancements made by Eichstadt, Congreve and Hale.
Name the scientist who solved theoretically the means by which a rocket could escape the 
earth’s gravitational field.
Describe the primary innovation in rocketry developed by Dr. Goddard and Dr. Oberth.
Explain the difference between gravitation and gravity.
Describe the contributions of Galileo and Newton.
Explain Newton’s law of universal gravitation.
State Newton’s three laws of motion.
Define force, velocity, acceleration and momentum.
Apply Newton’s three laws of motion to rocketry.
Identify two ways to increase the thrust of a rocket.
State the function of the combustion chamber, the throat, and nozzle in a rocket engine.
Explain which of Newton’s laws of motion is most applicable to rocketry.
Name the four major systems of a rocket.
Define rocket payload.
Describe the four major systems of a rocket.
List the components of a rocket propulsion system.
Identify the three types of rocket propulsion systems.
Name the parts of a rocket guidance system. 
Name four types of rocket guidance systems.
Define specific impulse.
Define density impulse.

bjectives

There is an explanation for everything that a rocket does. The explanation is most always based on the 
laws of physics and the nature of rocket propellants. Experimentation is required to find out whether a new 
rocket will or will not work. Even today, with all the knowledge and expertise that exists in the field of rocketry, 
experimentation occasionally shows that certain ideas are not practical.

In this chapter, we will look back in time to the early developers and users of rocketry. We will review some 
of the physical laws that apply to rocketry, discuss selected chemicals and their combinations, and identify 
the rocket systems and their components. We also will look at the basics of rocket propellant efficiency.
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History of Rocketry

Rocketry is based on the propelling of a vehicle by a reactive force. The action of the rocket’s 
exhaust gases produces a reaction, forcing the rocket in the opposite direction; therefore, a rocket en-
gine, or motor, is a reaction engine. Jet engines, which power most airliners, are also reaction engines.  
However, there is a distinct difference between the two types of engines.  A jet engine generates its 
reactive force by burning a mixture of air with a fuel; the rocket engine does not use air. The rocket 
carries everything it needs to generate a reactive force; this allows the rocket to operate in the atmo-
sphere and in space.

Rocketry is not a new concept and was not born out of our efforts to explore space. As early as 1220, 
and perhaps even earlier, rockets were used by the Chinese, who were also the first to use the rocket 
as a weapon of war. In 1232, the Chinese used rocket “fire arrows” at the battle of Kai-feng Fu.

Much later, in 1405, a German engineer by the name of Konrad Kyeser von Eichstadt devised a 
rocket that was propelled by gunpowder. The French used rockets to defend Orleans against the Brit-
ish in 1429 and again at the siege of Pont-Andemer in 1449.

During the Thirty Year War (1618­-1648), rockets weighing as much as 100 pounds were fired. 
These rockets exploded and sent small pieces of metal in all directions. In 1668, a German field artillery 
colonel, Christopher Friedrich von Geissler, experimented with rockets weighing over 100 pounds. 
By 1730, a series of successful flights had been made. Rockets saw extensive use in India when they 
were fired at the British in the battles of Seringapatam (1792 and 1799).

Congreve’s Rocket with Stabilizing Stick

Hale’s Rocket 

The news of India’s success with rockets 
caused Colonel William Congreve, a British 
artillery expert, to experiment with rockets. He 
standardized the composition of gunpowder 
explosives, added flight-stabilizing guide sticks 
and built the first viable launching pad. He was 
able to increase the rocket range from  approxi-
mately 300 yards to several thousand yards. 
Approximately 25,000 Congreve rockets were 
used in 1807 at the battle of Copenhagen. 

In the War of 1812 between Britain and 
the United States, the British formed a rocket 
brigade. This brigade saw action in the Napo-
leonic Wars at Leipzig in 1813 and at Waterloo 
in 1815.

William Hale, an English engineer, solved 
the problem of stabilizing rockets in flight with-
out a guiding stick. He used spin stabilization 
for his rockets, which were fitted with angled 
exhaust tubes that spun the projectile during 
flight.
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Even with improvements over the stick (skyrocket-type) stabilization, the rocket was seldom used 
for military purposes. Rockets of that time could not hit a specific target and, therefore, were not ac-
curate enough for precision bombardment. For this reason, the rocket was replaced as a significant 
military weapon. 

In 1903, Konstantin Eduardovich Tsiolkovsky, a Russian scientist, made the first computations for 
rocket flights into space. Although he never built a rocket, he designed several and solved theoretically 
how reaction engines could escape from and reenter the earth’s atmosphere.

In World War I, rockets were used to carry signal flares to light up the battlefield at night and to 
carry messages. Some rockets were used for the more typical military tasks against enemy airships 
and balloons. At least one World War I airplane was equipped with rockets. The rockets were placed in 
holding tubes attached to the biplane’s wing struts. The rockets were ignited electrically.

The regeneration of interest in rocketry was brought about by the work of Dr. Robert H. Goddard 
in the United States and Dr. Hemmann Oberth in Germany. Dr. Goddard, recognized as the “Father of 
Modern Rocketry,” was the first scientist to use liquid propellants (liquid oxygen and gasoline) in a 
rocket. He also developed mechanisms for correcting deviations from planned flight paths. 

Dr. Robert H. Goddard
built the first liquid-propel-

lant rocket as pictured in 
the drawing to the right.

Dr. Oberth’s work with liquid 
oxygen and alcohol propellants 
closely followed that of Dr. God-
dard. These firsts in the use of the 
more powerful liquid propellants 
(as compared to solid propellants) took place in the 1920s.

While Dr. Goddard’s work in liquid-propellant rocketry was strictly a private venture, rocketry in 
Germany had the attention and support of the government. As World War II drew near for the United 
States, Dr. Goddard’s work was directed toward developing quick-takeoff propulsion units for US Navy 
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aircraft instead of rocket-powered launch vehicles for studies of the upper atmosphere and space. In 
Germany, however, rocketry went forward with the development of powerful engines for rockets. These 
rockets were ultimately known as the V-2 and more than a thousand fell on England as high-explosive 
“bombs.”

After World War II, both the United States and Russia acquired German personnel with rocketry 
expertise. These men formed the nucleus of the program that developed the powerful launch vehicles 
and space vehicles used today. Our modern rocketry, therefore, is the result of the expertise of Dr. 
Goddard, Dr. Oberth and others who developed the rocket as a weapon and eventually converted it to 
peaceful use.

Newton’s Laws

Rocket propulsion, flight and control are achieved by obeying or applying certain physical laws.  
These laws were discovered by Galileo (1564-1642) and Sir Isaac Newton (1642-1727).

Gravity

Gravitation is the term used to describe the force of attraction 
that exists between all matter within the universe. Why and exactly 
how this attraction force operates is unknown. However, it is in 
effect at all times, and a body of small mass attracts a body of 
large mass just as the large mass attracts the small mass. Stated in 
another way, mutual gravitation exists between all bodies regard-
less of size.

When gravitation involves earth and a body or mass on or near 
the earth, gravitation is referred to as gravity. It can be theorized that 
when a pencil falls to the floor, the earth attracts the pencil as the 
pencil attracts earth. Theoretically, this is true; but, on the practical 
side, because the earth has so much more mass than the pencil, the 
pencil will fall toward earth while earth doesn’t move at all. Sir Isaac Newton

According to legend, Galileo  experimented on gravity by dropping a solid iron ball from the Lean-
ing Tower of Pisa. His experiments illustrated that objects of varying weight will strike the ground at 
the same time if they are released simultaneously and from the same height. From his theoretical work, 
Newton concluded that bodies in space (such as planets and their moons) are attracted toward each 
other in a special way. 

Bodies like earth and the moon are drawn toward each other by gravitation. The moon is kept from 
crashing into earth by the moon’s “forward” velocity (speed and direction), that creates the familiar 
centrifugal effect. Centrifugal effect, also identified by Newton, is the tendency of a rotating body to 
move away from its center of rotation. If it were not for gravity, the spinning earth would come apart 
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because of the centrifugal force created 
by its rotation. Virtually the same effect 
exists with the earth-moon system. The 
moon tries to fly off into space, but the 
gravitational attraction keeps it from 
doing so.

You can see the centrifugal effect by 
doing a simple experiment.  Tie a string 
to an object and swing the object around 
and around.  The object represents the 
moon, your hand represents earth’s cen-
ter of gravity, and the string represents 
gravitational attraction. If you swing the 
object steadily and with sufficient veloc-
ity, it will “circle the earth’’ and exert a 
constant pulling on the string. Increase 
the swing (velocity) enough, the string 
(gravitation) will break and allow the Galileo’s Experiments at the Tower of Pisa

object to fly off into “space.” Slow the velocity and the object will fall. With this little experiment, the 
falling action is considered to be toward the center of gravity (your hand).

Newton’s Law of Universal Gravitation

Newton’s law of universal gravitation defines the relationship of force, weight and mass. This law 
states that two bodies attract each other with a force directly proportional to their mass and inversely 
proportional to the square of the distance between them. This means that as either or both of the masses 
increase, the force increases, but that as the distance increases, the force decreases. This relationship 
may be expressed by the equation F = (GM1M2)/d2, where F represents force in pounds, M1 and M2 
are the masses of the two bodies in slugs (unit of mass accelerated at the rate of 1 foot  per second per 
second when acted upon by a force of 1 pound weight), d is the distance between them, and G is a 
constant for all kinds of matter—the gravitational constant.

The gravitational force of a symmetric sphere acts as though its entire mass is concentrated at its 
center. The earth approximates a symmetric sphere.  Thus, the distance between the earth and a body 
upon or near its surface is approximately equal to the earth’s radius. The mass of the earth, Ml, remains 
constant. From these values the force of the earth’s gravity, which corresponds to the weight of the 
body M2, is found to be 32.2 pounds-force for each unit of mass. This ratio is called the gravitational 
constant.

The weight of a body, that is, the attraction upon it by the force of the earth’s gravity, may be 
measured by using a spring scale. The apparent weight of a body depends upon the force exerted upon 
it by another larger body. The degree of force exerted depends upon the masses of both bodies. How-
ever, the mass of a body never changes. The mass of a body may be defined as the quantity of matter 
it contains. 
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Mass enables matter to occupy space.  The mass of a body in kilograms can be obtained by dividing 
its weight in Newtons by the acceleration value of gravity at a specific position.  At sea level a mass of 
one kilogram would weigh approximately 9.8 Newtons at 45° latitude on the earth’s surface.  

The mass of a body in slugs can be obtained by dividing its weight in pounds by the acceleration 
value of gravity at a specific position.  At sea level a mass of one slug would weigh 32.174 pounds at 
45° latitude on the earth’s surface.

Newton’s Laws of Motion

Let’s review Sir Isaac Newton’s three laws of motion.  The first states: A body in a state of rest 
and a body in motion tend to remain at rest or in uniform motion unless acted upon by some 
outside force. This really is an explanation of inertia, or the tendency of all things to remain in a fixed 
condition.

 Newton used the term “force” (F) to define the cause of motion. You experience the application of 
force by exerting your muscles to move yourself or some object. 
Velocity (v) is the rate at which a body moves when a force is 
applied to it. It is expressed as a unit of distance per unit of time, 
such as feet per second, and it implies a specific direction. The 
rate at which the velocity of a body increases is called positive 
acceleration. Acceleration (a) is expressed in unit of distance per 
unit of time, usually in feet per second per second. It occurs when 
a body is subjected to the application of a force over a continuing 
period of time. For example, the acceleration that results from the 
force of gravity upon a free-falling body is about 32.2 feet per 
second per second.

The second law states: The rate of change in the momentum 
of a body is proportional to the force acting upon the body 
and is in the direction of the force.

A Demonstration of Newton’s Second Law of Motion

 Momentum is defined as the product of 
mass and velocity. Newton found that the 
action of force on a body changes the body’s 
momentum at a rate proportional to the force 
and the direction of the force. If the mass 
of a body remains constant, any change 
in momentum is reflected in a change of 
velocity. 

For example, if a worker drops a brick 
from the fifth floor of a building, the brick 
will be accelerated by the force of gravity 

A Demonstration of Newton’s First 
Law of Motion.

at the rate of 32.2 feet per second per second. The mass of the brick does not change; its velocity and 
momentum change at a rate proportional to the force of earth’s gravity.
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The third law states: To every action, there is 
an equal and opposite reaction. The term action 
means the force that one body exerts on a second, 
and reaction means the force that the second exerts 
on the first. If a book presses down on a table with 
a force of 2 pounds, then the table pushes back on 
the book with a force of 2 pounds. Gravity pulls the 
book down, and the table pushes it up. These two 
forces are equal and opposite, but both act on the 
same object. There is no unbalanced force acting on 
the book, and it remains at rest in accordance with 
Newton’s first law.

A Demonstration of Newton’s Third Law of Motion

Application of Newton’s Laws to Rocketry

We can relate Newton’s three laws to rocketry as follows:

Rocket Launching the Space Shuttle

(1) The first law states simply that when 
launching a rocket vertically, the propulsion system 
must produce enough force (thrust) to overcome 
the inertia of the launch vehicle. Another way of 
expressing this is to say that the thrust (in pounds) 
must be greater than the weight of the rocket. As 
an example, the Saturn V rocket used to launch 
the Apollo spacecraft series weighed 6,000,000 
pounds. In order for the Saturn V to be launched 
vertically, its engines had to produce more than 
6,000,000 pounds of thrust. In fact, the engines of 
Saturn V produced 7,500,000 pounds of thrust.

(2) The second law is shown mathematically by 
the equation F µ MA - where F represents force, M 
represents mass and A represents acceleration. The 
symbol µ stands for “proportional to.”  What this 
formula says is that the amount of force required 
to accelerate a body depends on the mass of the 
body. The more mass, the more force is required 
to accelerate it.

You may have seen on television or at the 
movies how slowly the older, large rockets lift-
off their launch pads.  At the moment of liftoff, 
the total mass (or weight) of the rocket is only 
slightly less than the force being produced by the 
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engines.  However, every second the rocket’s mass is being decreased by burning and expelling the 
rocket propellant as thrust.  At the same time, the amount of force being produced remains constant.  
So, the force becomes  increasingly  greater  than   the dwindling  mass,  and  this  results  in a rapid 
second-by-second acceleration until the propellant is used up.

(3) Newton’s third law of motion is the heart of rocketry because the action of the rocket engine 
produces the forward motion of the total rocket. To relate this law of motion to a rocket, we must 
understand what is happening in a rocket engine. All chemical rockets develop thrust by burning fuel 
and expelling mass (exhaust particles) from their exhaust nozzles at a high velocity. The thrust (for-
ward motion or push) produced is a reactive force acting in a direction opposite to the direction of the 
exhaust. Going back to Newton’s second law (F µ ma), we see that there are two ways to increase the 

The Basic Rocket Engine or Motor

Rocket Systems

Modern rockets used for space applications of military 
purposes consist of four major systems. The systems are 
known as: (1) the airframe system, (2) the propulsion sys-
tem, (3) the guidance system, and (4) the control system. 
These systems exist to deliver whatever the rocket is car-
rying (payload). The payload of the three Saturn V rocket 
stages was the Apollo spacecraft consisting of the command 
module, the service module, and the lunar module. The 
rocket and payload arrangement on the return trip from 
the moon was the service module rocket and the command 

Major Systems of Rockets

thrust (force)—either increase the mass of the 
exhaust or accelerate the exhaust particles to a 
higher velocity. When the rocket fuel burns in 
the combustion chamber, the gases produced are 
very hot and create a very high pressure inside 
the chamber. This high pressure forces the gases 
through the exhaust nozzle to the lower pressure 
outside the rocket. As these gases move out of the combustion chamber, they pass through the throat, 
which constricts (narrows) the exhaust and thereby increase its velocity. The “bell-shaped” nozzle al-
lows the escaping exhaust to expand thereby lowering its pressure. This accomplishes two important 
things—it keeps the pressure in the nozzle lower than inside the combustion chamber and, at the same 
time, permits only rearward motion of the exhaust gas.

In the figure above, we can see what the aerospace engineer strives for in producing a powerful 
and efficient rocket engine—to create as high a pressure as possible in the combustion chamber and to 
design the throat and nozzle for maximum acceleration of exhaust particles.
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module payload. Of course, the ultimate payload was the astronauts, materials and the data returned 
from the moon.

Today, the payloads of large US rockets consist primarily of earth satellites (including the space 
shuttle) and deep space vehicles. Most military rockets have payloads of explosives. These explosives 
include nuclear and thermonuclear “bombs.” Of course, the payloads of the smallest military rockets are 
conventional-type explosives especially designed to destroy specific types of targets such as airplanes, 
tanks and hardened command posts.

The Airframe System

The airframe system of a rocket, like that of an aircraft, serves to contain the other systems and to 
provide the streamlined shape. The airframe must be structurally strong and capable of withstanding heat, 
stress and a great deal of vibration. At the same time, it must be as lightweight as possible. Every pound 
of weight saved in the airframe allows an additional pound of weight to be added to the payload.

The Atlas rocket was a prime example of how engineers design an airframe that is both strong and 
lightweight. The skin of this rocket also serves as the wall of the propellant tanks. This eliminates the 

First Stage of the Saturn V Launch Vehicle

need for separate internal tanks and provides  great 
savings in weight. The skin of the Atlas is thinner 
than a dime and when it has no fuel aboard, it must 
be pressurized to keep it from collapsing.

Precision is the watchword in making a rocket 
airframe. Techniques used to manufacture rocket 
airframe parts include machining, forging casting, 
spinning and extruding. To attain the required 
precision essential in building a rocket, the knowl
edge of the scientist and the skill of the technician 
are required to ensure the accuracy of each manu
facturing technique—from the blueprint to the 
launch pad.

One of the most spectacular airframes ever 
constructed for a US rocket was that of the mas-
sive Saturn V launch vehicle. In its Apollo lunar 
(moon) flight configuration, the Saturn stood 363 
feet tall. Of course, this included the payload of 
astronauts and the subvehicles that were delivered 
to the vicinity and surface of the moon.

Saturn’s first-stage airframe had a diameter of 
33 feet and its length was 138 feet. This diagram  
shows the major components of the first stage’s 
airframe. Beginning at the bottom was the thrust 
structure that contained the vehicle’s five F-1 en-
gines. 
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The thrust structure was a complex group of beams and braces made mainly of aluminum alloy 
plus some steel. Surrounding the thrust structure was a skin assembly that provided additional strength 
and better aerodynamics, lessening the effect of drag caused by the rocket pushing its way through the 
air. 

Other aerodynamic features attached to the thrust structure included fairings and fins, as seen in the 
illustration. The fairings were drag reducers. The fins helped stabilize the rocket’s flight while it was 
climbing rapidly through the atmosphere.

Fuel and oxidizer tanks made up the greater portion of the Saturn’s first-stage airframe (this is true 
with all liquid-propellant rockets). The walls of these tanks formed a large part of the rocket’s exterior 
surface or skin. Within each of the tanks were slosh baffles that added strength to the airframe, while 
serving another purpose. The other purpose was to stabilize the propellant’s motion as the rocket vi-
brated and tilted in flight. Without such baffles, the liquid oxygen (oxidizer) and kerosene (fuel) would 
setup sloshing and swirling motions that would make the rocket uncontrollable.

What is labeled skin in the figure on page 456 is also known as the intertank structure. The inter-
stage structure included that skin portion used to join the three rocket stages. While the propellant tank 
walls exposed to the airstream were smooth, the metal “skirts” forming the intertank and interstage 
structures were corrugated. This corrugation was necessary to give greater strength to a relatively thin 
part of the structure.

Although the airframes of all liquid-propellant rockets possess certain characteristics of the Saturn 
V’s structure, there are differences. These differences depend on the size and purpose of the rocket. 
Again, in the design and construction of airframes for rockets, the primary objective is to build a struc-
ture that will withstand all anticipated stresses while using the least possible weight.

Propulsion System

The rocket propulsion system includes the propellant used, the 
containers for the propellant, all plumbing that may be required to 
get the propellant from the containers to the engine, and the rocket 
engine itself. In other words, everything directly associated with 
propelling the rocket is part of the propulsion system. 

From our previous discussion of the Saturn V’s airframe, you 
can see that areas of the airframe may also serve as part of the 
propulsion system. Propellants are classified as liquid or as solid. 
Liquid propellants are carried in compartments separate from the 
combustion chamber. Solid propellants are carried in the combus
tion chamber. The two types of propellants lead to significant 
differences in engine structure and thrust control.

Propulsion systems used in rocketry may be generally clas-
sified as chemical, gas-heating and electric systems. Those con-
sidered chemical systems usually involve the mixing and burning 
of a chemical fuel and a chemical oxidizer to produce the hot, 
expanding gases needed to provide thrust. The gas-heating system 

Liquid Fuel Propulsion System
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design would use an external heat source to heat and cause 
the propellant to build the pressure necessary to provide 
thrust by exiting the exhaust nozzle at high velocity. Electric 
systems use magnetic fields and currents to propel matter 
in small amounts.

Guidance System

The “brain” of a large, sophisticated rocket is its guid-
ance system. The guidance system is a self-contained elec-
tronic unit that employs a computer and an inertial platform 
and may also have a star-tracking unit for space navigation. 
The computer is programmed for the desired flight trajectory 
before launch. Of course, there is also a radio link between 
the rocket’s mission controllers and its guidance system. 
This link allows changes to be made in instructions to the 

Solid Fuel Propulsion System

rocket’s guidance system, and it also functions, more or less, as a direct control in the event the on-
board guidance system experiences a partial malfunction.

In comparison to the rest of the rocket, the guidance system is exceptionally small. The miniaturization 
of electronics is the explanation for its small size. The electrical power needed flows through miniatur-
ized circuits, and the wire connecting the various components is correspondingly lightweight.

Again, the Saturn V, as an example, gives an idea of how relatively small a guidance system is 
in comparison to the rest of the rocket. This photograph shows the entire instrument unit being fitted 
atop the 22-foot-diameter third stage. The actual inertial guidance system was only a part of the total 

The Saturn V’s Instrument Unit

instrument unit.
The guidance system senses the rocket’s 

motion and this data is fed into the system’s 
computer. If the rocket is not flying according 
to the planned trajectory, impulses for cor-
recting the trajectory are sent to the control 
system.

Coupled with an inertial guidance system 
may be an automatic celestial navigation unit, 
or “star tracker.” However, a star tracker is 
justified only for spaceflight where it is ex-
ceptionally important to keep a spacecraft on 
the correct flight path. 

 Although rocketry is involved in making 
course corrections for the flight of spacecraft, 
we are hesitant to associate the star-tracker 
unit with the guidance system for rockets. 
The spacecraft itself is really the payload of a 
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rocket launch vehicle whose guidance system initially placed the spacecraft on the correct flight path. 
Even so, a star-tracker unit can be linked to the primary guidance system of any rocket vehicle.

When we leave the larger, more sophisticated rockets and look at the smaller ones, we find there are 
several other types of guidance systems. These smaller rockets are within the area of military use; they 
are missiles. Of course, the largest of these missiles use the inertial guidance system too. These large 
missiles are capable of doing more than delivering a destructive device over intercontinental distances; 
they could be used (as some models have) as launch vehicles for spacecraft.

The smaller rocket missiles that have a guidance system usually are known as short-range mis-
siles. Such missiles may be guided to their targets by the command of a human director. Other mis-
siles’ guidance systems may require that they “home in” on the target that is radiating heat or light. 
Still other missiles are built to fly along a beam that is aimed at and kept on the target. These guidance 
systems, which are in addition to the inertial system, are the command system, the homing system and 
the beam-rider system.

Control System

Again, we must think of the guidance system of a rocket as being its “brain.” It doesn’t matter if 
this “brain” is within the rocket as a self-contained unit (such as the inertial system) or mainly outside 
the rocket (such as a command system). Whatever the rocket’s guidance system dictates should be done 
to keep on the correct flight path must be carried out by another system—the control system.

While in the atmosphere, control systems for rockets can work much like those of an airplane. 
Once the rocket climbs to where the air is very thin, other methods need to be considered. One way to 
change the rocket’s flight path is to change the direction of the exhaust stream. Another way is to use 
small rockets along the side of the rocket near the nose and tail of the airframe to redirect the rocket. 
Variations or combinations of the systems control large and small rockets. (These same systems can 
also be used in the atmosphere.)

Specific Impulse and Density Impulse

The effectiveness of either type of propellant is stated in terms of specific impulse or density im-
pulse. The word impulse means thrust and is the measure of how much thrust will be obtained from a 
propellant.

Specific impulse (Isp) is the number of pounds of thrust delivered by consuming one pound of pro-
pellant (oxidizer/fuel mixture) in one second. If, for example, a pound of common black powder burns 
up in one second and produces 100 pounds of thrust, the specific impulse of this batch of powder is 100 
seconds. Packing one pound of this powder into a rocket motor and igniting it would give our rocket 
a 100-pound kick that would last for one second. Now, how high or far our rocket travels depends on 
several factors; such as the total weight of the rocket and the design of the rocket motor. 
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Let’s suppose we do not want to burn all this powder at one time. We do not need 100 pounds of 
thrust to lift our rocket because the entire rocket weighs only 2 pounds, including the black-powder 
propellant. What we want to do is spread the total thrust available over a longer period of time. 

For instance, we would use a long-tube design for the motor. This would allow only a small portion 
of the powder’s total surface to be exposed to the burning process. Let’s say that this arrangement of 
the propellant extends the burning time to 10 seconds. In effect, we have divided our 100 pounds of 
thrust by 10, which gives us 10 pounds of thrust per second until the propellant is burned up.

Taking this example to the extreme, if we could cause the same powder (propellant) to burn for 100 
seconds, then we would have one pound of thrust per second. (However, our two-pound-weight would 
not move in the vertical direction.) 

When you see the symbol Isp and a number following it, you should remember that the number 
represents the seconds during which 1 pound of thrust could be provided by burning 1 pound of pro-
pellant. For example, if a propellant has an Isp of 500, it means that burning 1 pound of this propellant 
will produce 1 pound of thrust for 500 seconds or 500 pounds of thrust for 1 second.

Specific impulse is not the only measure that is considered when choosing a propellant for a rocket. 
Density impulse is another measure of a propellant’s thrust according to the volume involved. The 
propellants for the Saturn V’s second stage are a good example. They were oxygen and hydrogen. This 
combination gives a specific impulse of 364 seconds. Yet, a pound of these propellants takes up a lot 
of space (volume) because of the relatively light weight of hydrogen, even in liquid form. 

The weight of the structure, or airframe, needed to contain this volume somewhat offsets the ad-
vantage of a high Isp. The density impulse for oxygen/hydrogen is 90. 

Another propellant composed of red fuming nitric acid (RFNA) as the oxidizer and aniline as the 
fuel has a specific impulse of 200 and a density impulse of 310. So why wasn’t the RFNA/aniline 
propellant used for the Saturn V second stage? Very simply, the people managing the program had to 
consider many factors other than specific and density impulses. These factors included cost, ease and 
safety of handling the propellant, and stability of the propellant. The decision reached, therefore, was 
a compromise after considering all factors and all possible combinations of oxidizers and fuels.
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n	 reaction engine
n	earth’s gravitational field
n	 spin stabilization
n	gravitation
n	gravity
n	Newton’s law of universal gravitation
n	Newton’s three laws of motion
n	 force
n	velocity
n	acceleration
n	momentum
n	combustion chamber
n	 throat (of a rocket engine)
n	nozzle (of a rocket engine)
n	payload
n	 four major rocket systems—airframe, propulsion, guidance and control
n	propulsion systems—chemical, gas-heating, electric
n	guidance—inertial, command, homing, beam-rider
n	 specific impulse
n	density impulse

SELECT THE CORRECT ANSWER

 1.	 (Gravitation / Gravity) is the attraction between all matter within the universe, but involves the
	 earth and another body nearby.
 2.	 (Galileo / Newton) conducted experiments from the Leaning Tower of Pisa.
 3.	 (Galileo / Newton) proved that objects of varying weights strike the ground at the same time, if
	  released at the same time.
 4.	 The (Germans / Chinese) were the first to use a rocket at a weapon of war.
 5.	 Dr. (Oberth / Goddard) is recognized as the “Father of Modern Rocketry.”
 6.	 Rockets were first attached to aircraft in (World War I/ World War II).
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MATCHING

  7.	 Match the scientist with his contribution:
a.	Konrad Kyeser von Eichstadt         
b.	Colonel William Congreve	
c.	 William Hale 	 	
d.	Konstantin Tsiolkovsky 	 	
e. 	Dr. Robert Goddard 	
f. 	Dr. Hermann Oberth	

  8.	 Match the terms with their correct definitions
a.	 force 	
b.	 acceleration 	
c.	 velocity 	 	
d.	momentum	  	 	

MULTIPLE CHOICE

  9.	 Which is not a major system of modern rockets?
a.	The airframe 
b.	The payload 
c.	 The propulsion 
d.	The guidance 
e.	 The control 

10.	 Which of the following doesn’t apply to the airframe system?
a.	 It provides a streamlined shape.
b.	 It contains the other systems.
c.	 It must be strong and heavyweight.
d.	 It must withstand heat, stress, and vibration.

11.	 Which is not a propulsion system used in rockets?
a.	Chemical
b.	Gas heating
c.	 Nuclear
d.	Electric

12.	 Which is not a part of the guidance system?
a.	A computer
b.	An inertial platform
c.	 A star-tracking unit
d.	Controls for the engine

(1)	 Used spin stabilization for his rockets
(2)	 Made first computations for rocket flight into space
(3)	 Built the first viable launching pad
(4)	 Devised first rocket propelled by gunpowder
(5) 	 Used more powerful liquid propellants
(6) 	 Developed method to correct deviations from flight path	

(1)	 The product of mass and velocity
(2) 	 The cause of motion
(3) 	 Application of force over time
(4) 	 Rate a body moves when force is applied
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FILL IN THE BLANKS

13.	 Newton identified __________ _________ , which is the tendency of  a rotating body to move
	 away from its center of rotation.
14.	 Newton’s __________ law of motion states a body at ___________ and a body in ___________
	 tend to remain in their respective states unless _____________________.
15.	 Newton’s __________ law of motion states that for every action, there is a________________ .
16.	 Rockets were replaced as a significant military weapon when artillery developed
	  __________________________.
17.	 Whatever the rocket is carrying is defined as the _________________.
18.	 Propellants are classified as either _____________ or ______________.

TRUE OR FALSE

19.	 Mutual gravitation exists between all bodies, regardless of size.
20.	 After World War II, both the Soviets and Americans acquired German rocket experts.
21.	 The skin of the Atlas rocket was so thin that, if not fueled up, it had to be pressurized to keep
 	 from collapsing.
22.	 As with all solid fuel rockets, the Saturn V’s first stage is made up mostly of fuel and oxidizer
	  tanks.
23.	 The control system is the system of the rocket that equates to the “brain”.
24.	 The homing system is a guidance system that missiles use to fly along a beam to their intended 
	 target.

SHORT ANSWER

25.	 Apply Newton’s laws of motion to rocketry.
26.	 What is Newton’s law of universal gravitation?
27.	 What are two ways to increase the thrust of a rocket?
28.	 Define specific impulse for propellants.
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